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Abstract-The applicability of the Green-Rivlin representation for non-linear viscoelastic materials is investi­
gated by taking the errors of the experimental data into account. Two bounds for the relative error of the relaxa­
tion or creep kernel functions have been obtained as a function of measurement errors. The analysis shows that
the kernels are very sensitive to experimental errors. Moreover, when the number ofterms in the integral expansion
is increased, so is the error. The theoretical estimates are compared with the errorsobtained when using experi­
mental data of a Lexan-polycarbonate polymer. The comparison is satisfactory for one of the bounds, at least
in this particular case.

1. INTRODUCTION

GREEN and Rivlin [1] have presented a theory for non-linear viscoelastic materials (simple
materials with memory), in which the stress constitutive functional is expanded as an infinite
series of multiple integrals. This representation has been used, e.g. by Ward and Onat [2],
Hadley and Ward [3], Onaran and Findley [4], Lifshitz and Kolsky [5], Neis and Sackman
[6], to describe the non-linear mechanical response of polymers. Lockett [7] has discussed
the type of experiments that are needed in order to characterize a constitutive equation
involving multiple integrals up to and including a third order term.

It has been generally assumed that the accuracy of this method can be obtained, at least
in principle, by increasing the number of terms. We will prove, using perturbation theory,
that this assertion is not generally true since the kernels of the multiple integrals turn out
to be very sensitive to scatter in the experimental data. This sensitivity is increased as the
number of terms increases.

Even when the data is smoothed in the manner suggested in [5] and [6], the system of
linear equations that are used to evaluate the kernel functions remains ill-conditioned.
Therefore large errors are to be expected for materials of high order.

2. ERROR ANALYSIS

We consider, for the sake of simplicity, a uniaxial state of stress. Hence, the Green­
Rivlin representation of the stress functional for a material of ordert n reduces to

(1 )

t Now at: Departmento de Metalurgia, Comisi6n Nacional de Energia At6mica, Buenos Aires, Argentina.
t The order of the material is equal to the largest number n of the iterated integrations occurring in (I).
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where
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O"(t) and eft) = eft) +eZ(t)/2 are respectively the stress and finite strain in the X -direction,
E(t) = ru/rX is the infinitesimal strain and Ek represents the relaxation kernel functions to
be determined experimentally. The strain functional that relates eft) to the history of the
stress O"(T) is given by an expansion similar to (1).

Now let us consider n simple relaxation tests under a constant strain OCi of the form

Ci(t) = ociH(t)

where H denotes the Heaviside step function

i = 1,2 ... /1, (2)

H = 0 t < 0, H = I t 2: O.

Substitution of (2) into (1) yields the stress response to this program:

where the notation

O"i = I (ocyE j
;= 1

i = 1.2 ... n, (3)

O"i = O"(tk' OCi), E j = EPk' tk ··· td

is used and tk denotes the instant at which the measurements are made. Thus, the program
(2) provides the necessary equations for the determination of the values of the unknown
kernels E 1 , E z ... En along the line T I = Tz = ... = Tn = tk·

If the first equation (3) is divided by Oei, the second by oCz .. . and the last one by oen,
the equation (3) can be written in the form

Ax = t (4)

where the elements of the matrix A are llij = (ocy- 1 and the elements of the vectors x and t
are respectively equal to

Xi = Ej , t j = (Ii,i' Ot!i'

Note that

OC 1 (oei (oc
l
)"- 1

Oe2 (oCz)z (o('z)"- 1

(5)det A =

OCn (oc,,)Z (0(',,)"-1

is a Vandermode determinantt and it is always different from zero for O('i #- Oej (i #- j).
This assures the existence of a unique solution of (4).

Now let us examine (4). First, if the behavior of the material does not depart too much
from linearity, the vector t is nearly proportional to the first column of A. Second, the
matrix A may be ill-conditioned since it is not diagonally dominant and its elements could
be of different orders of magnitude. Consequently one should expect computational difficul­
ties when solving (4) for x, especially for the determination of Ez , E 3 ... En·

t This interesting property of A has apparently been ignored In the literature mentioned in Section I.
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To make this assertion more precise, consider that the measured values of the stresses
(Ji and strains Oei are affected by experimental errors 15(Ji and 15ei respectively, so that t and
A will be affected by the errors* 15t and 15A. Hence the solution x of (4) will also be affected
by an error 15x since one is solving the system of linear equationst

(A + 15A)(x + 15x) = t + 15t (6)

instead of (4). Note that 15t = 15t(15(Ji' 15e;), 15A = 15A(15e;). By subtracting (4) from (6) and
rearranging one gets

(7)

where I is the unity matrix. Since I+A- I 15A is invertible provided IIA- I 15AII < 1, where
II . II indicates a suitable matrix norm,t it follows that

and the relative error II15xll/llxll is expressed by

(8)

where K = IIAIIIIA -111 is the condition number of the matrix A. The matrix and vector
norms that will be used are

Ilxll = maxlx;l,
i

n

IIAII = max L laijl,
i j= 1

(9)

which verify the requirements IIAxl1 S; IIAllllxll, I1III = 1 used above. In general, the sen­
sitivity of the system (4) will depend on the condition number K. When K ~ 1, (8) can over­
estimate the error.t

If 15A == 0, the formula

gives a better estimate of the relative error.
For example, let us consider a material of order three (n = 3) and assume that

(10)

i = 1,2,3, (11 )

where J1 is a positive number.
It immediately follows that

-1 ( 8 2)IIA II = max 7'~'J12 ' (12)

where the notation max(., ., .) indicates that the maximum number between the parentheses
has to be taken. Consequently, for any value of J1 "* 0, K ~ 1. If a material of order four

t If rounding errors are also considered, they may be added to c5t and c5A.
t See e.g. Wilkinson [8].
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under the same step loading (11) for i = 1, 2, 3,4 is considered, an easy computation shows
that

(13)

Finally the condition number K of a material of order n under the loading (11) is obtained
by using the norms

n

IIAII = I (iJ1.)i- 1,

i= 1

(14)

which have been obtained by induction. Bi are suitable positive constants.
The above results show that the value of the kernels at "I = "2 = ... = Tn = i k are

very sensitive to errors in the experimental values of (Ii and Oei' Moreover, if the number of
terms in the integral expansion (1) is increased, so is the value of K. Thus, the experimental
accuracy has to be further improved in order to keep Ilbxll/llxll within a certain limit.

When the constant strains Oei are arbitrarily selected rather than given by (11), it will be
necessary to compute A- I in order to apply either of the estimates (8) and (10).

Let us check the usefulness of this error analysis when applied to experimental data:
stress relaxation experimentst ofthe form (2) performed on a Lexan polycarbonate polymer
at a temperature of 25°C. Table 1 shows the different uniaxial strains oei , the corresponding
stresses (Ii and the computed values of Ei at the instant tk 1000 sec. It has been assumed
that the polymer 'behaves like a material of order three.

The calculations give

IIAII = 1·045, /( = 12,294.

If only errors in the measured stresses are considered as in Table 1, one obtains by solving
(6) the new values of the kernels E; = Ei +bE; as shown in Table 1. The estimates (8) and
(10) give the following results

II b.x II < ?21
Ilxll --

Ilbxll < 3-97
Ilxll -

(estimate (8»,

(estimate (l0»,

TABLE 1

OCt (Ji (;(JJ(J, Ei E;
(108x dynes/cm 2

) (lOl0x dynes/cm 2
)

1 0·015 2.21 0·014 1-602 1·548
2 0·035 4·39 0·018 - 7·575 -0-5201
3 0-0435 4·98 -0'009 -67,54 -206·7

t The author is indebted to Professor I. Yannas of M.I.T. for providing unpublished experimental data.
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whereas the computed value is

Ilbxll = 2.06.
IIxll

877

This example shows that small errors in the stresses become greatly amplified in the kernel
values. Although in this case (8) is very pessimistic, the estimate (10) is in agreement with the
computed value. Calculations performed using different error vectors bt have shown a
similar tendency.

3. CONCLUDING REMARKS

The analysis of Section 2 is obviously applicable to the creep kernel functions of the
strain functional. Besides, it is unnecessary to consider more complex loading programs
once it has been proved that the value of the kernels along the lines T1 = T2 = . . . tk are
very sensitive to experimental errors. A similar comment can be made for three-dimensional
loading programs.

In conclusion, the error analysis performed in this work has shown that the use of the
Green-Rivlin representation with a large number of terms would require a level of
experimental accuracy which is apparently unavailable at the present time. For a fixed
experimental accuracy, the order of the material cannot be increased indefinitely because of
the numerical errors that may arise in the computation of the kernels. Thus, other methods
should be used, e.g. the one proposed by Pipkin and Rogers [9].

Finally it is to be noted that these results are also applicable to the determination of the
kernels of non-linear functionals used to characterize retarded non-linear responses to
time-dependent external excitations (Nakada [10]).
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A6CTpaKT-J.1cCJle)1yeTcli npl1MeHI1MOCTb rrpe)1CTaBJleHl1l1 rpI1Ha-PI1BJlI1Ha )1Jlll HeJlI1HeHHblx,B1I1Ko-yrrpYfl1x

MaTepl1aJlOB, rryTeM yqeTa 1101lpeWHocTeH, BbITeKalOWI1X 111 :lKCl1epl1MeHTaJlbHbiX )1aHHblx. flOJlyqalOTCli

LlBa OrpaHl1qeHl1l1 )1JlH ):IeHCTBI1TeJlbHOH IIorpeWHOCTI1 <PYHKUI1H peJlHKCaUl111 11J111 <PYHKUI1I1 nOInYQeCTI1 B

BI1)1e <PYHKUI1I1 110rpelllHOCTeH 111MepeHI1S1. AHaJll11 YKa1blBaeT Ha 60JlbWYlO QYBCTBI1TeJlbHOCTb H)1ep

<PYHKUI1I1 B 1aBI1Cl1MOCTI1 OT 3KCIIepl1MeHTaIlbHbiX 110rpelllHOCTeH. KpoMe Toro, YBem1QeHl1e QI1CJla BblpalK­

eHI1M l1HTerpaIlbHoro pa1JlOlKeHl1H TaKlKe OWI160QHO. CpaBHI1BalOTCSI TeOpeTI1QeCKl1e I1CCJle)10Bafll1H C

110rpeWHOCTlIMI1, IIOJlYQeHHblMl111Pl1110Jlb10BaHl1l1 3KCI1epl1MeHTaIlbHbiX )1aHHbIX ):IIlll MHorO-Kap60HaTHoro

110Jll1Mepa .neKcaHa. CpaBHeHl1e Y)10BJleTBOpI1TeJlbHO )1JlSl O)1HOrO 111 OrpaHI1QeHI1H, 110 KpaHHoH Mepe )1Jl.
3Toro oc060ro CJlYQall.


