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Abstract—The applicability of the Green—Rivlin representation for non-linear viscoelastic materials is investi-
gated by taking the errors of the experimental data into account. Two bounds for the relative error of the relaxa-
tion or creep kernel functions have been obtained as a function of measurement errors. The analysis shows that
the kernels are very sensitive to experimental errors. Moreover, when the number of terms in the integral expansion
is increased, so is the error. The theoretical estimates are compared with the errorsobtained when using experi-
mental data of a Lexan-polycarbonate polymer. The comparison is satisfactory for one of the bounds, at least
in this particular case.

1. INTRODUCTION

GRreeN and Rivlin [1] have presented a theory for non-linear viscoelastic materials (simple
materials with memory), in which the stress constitutive functional is expanded as an infinite
series of multiple integrals. This representation has been used, e.g. by Ward and Onat [2],
Hadley and Ward [3], Onaran and Findley [4], Lifshitz and Kolsky [5], Neis and Sackman
[6], to describe the non-linear mechanical response of polymers. Lockett [7] has discussed
the type of experiments that are needed in order to characterize a constitutive equation
involving multiple integrals up to and including a third order term.

It has been generally assumed that the accuracy of this method can be obtained, at least
in principle, by increasing the number of terms. We will prove, using perturbation theory,
that this assertion is not generally true since the kernels of the multiple integrals turn out
to be very sensitive to scatter in the experimental data. This sensitivity is increased as the
number of terms increases.

Even when the data is smoothed in the manner suggested in [5] and [6], the system of
linear equations that are used to evaluate the kernel functions remains ill-conditioned.
Therefore large errors are to be expected for materials of high order.

2. ERROR ANALYSIS

We consider, for the sake of simplicity, a uniaxial state of stress. Hence, the Green—
Rivlin representation of the stress functional for a material of orderf n reduces to

oty = Y S, 1)
k=1

T Now at: Departmento de Metalurgia, Comision Nacional de Energia Atoémica, Buenos Aires, Argentina.
1 The order of the material is equal to the largest number » of the iterated integrations occurring in (1).
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where

o ! celty) Celty)  Qe(ty)
Si = Eft—t . t—1y. . 0—1) =" —— . . —-—dr,dr,.. .dr,.
T B _ ity Oy

CTy

al(t) and e{t) = e(t)+¢%(1)/2 are respectively the stress and finite strain in the X-direction.
&t) = cu/é X is the infinitesimal strain and E, represents the relaxation kernel functions to
be determined experimentally. The strain functional that relates ¢(t) to the history of the
stress o(t) is given by an expansion similar to (1).

Now let us consider n simple relaxation tests under a constant strain ge; of the form

eft) = ye;H(t) i=1.2...n (2)
where H denotes the Heaviside step function
H=0 t < 0, H =1 =0

Substitution of (2) into (1) yields the stress response to this program:

n

o= 3 (peVE;, i=12...n 3)
i=1
where the notation

a; = o(ty. o€)s E, = Ef{t,. t,...1)

is used and f, denotes the instant at which the measurements are made. Thus, the program
(2) provides the necessary equations for the determination of the values of the unknown
kernels E,,E,... E,along theline 1, =1, = ... =1, = {,.

If the first equation (3) is divided by ,e;, the second by 4e, ... and the last one by ye,.
the equation (3) can be written in the form

AX = t. (4)

where the elements of the matrix A are g;; = (o¢;)’ ! and the elements of the vectors x and ¢
are respectively equal to

x; = FE;, t; = 0;/0€;.
Note that
L 4e (0"1‘)2 o lee)tT :
I pe, (0"2)2 oo (eel)"” ! c
detA =4y .. ... ... .. (3)
l Oen (Oen)2 coee (Oerz)n'l

is a Vandermode determinantt and it is always different from zero for 4e; # oe; (i # ).
This assures the existence of a unique solution of (4).

Now let us examine (4). First, if the behavior of the material does not depart too much
from linearity, the vector t is nearly proportional to the first column of A. Second, the
matrix A may be ill-conditioned since it is not diagonally dominant and its elements could
be of different orders of magnitude. Consequently one should expect computational difficul-
ties when solving (4) for x, especially for the determination of E,, E;. .. E,.

t This interesting property of A has apparently been ignored in the literature mentioned in Section 1.
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To make this assertion more precise, consider that the measured values of the stresses
o, and strains ,e; are affected by experimental errors do; and Je; respectively, so that t and
A will be affected by the errors* 6t and A. Hence the solution x of (4) will also be affected
by an error dx since one is solving the system of linear equationst

(A+5A)(x+0x) = t+Jt (6)

instead of (4). Note that ot = dt(d0;, de;), JA = JA(Je;). By subtracting (4) from (6) and
rearranging one gets

(I+A 15A)0x = A7 '6t— A '5Ax (7)

where I is the unity matrix. Since I+ A~ 'SA is invertible provided |A™!'0A| < 1, where
| - | indicates a suitable matrix norm,¥ it follows that

IX+A~"0A) M < (I—[ATISADT" if I = 1,

and the relative error ||0x||/{|x]| is expressed by

llox| _ K (Hétll |5AN)’ ®)

IxI = (L=« [SAl/IADY ie] ~ JA]
where x = |A|/||A"'|| is the condition number of the matrix A. The matrix and vector
norms that will be used are

x|l = max|x},  [Al = max ) |a, )
t 13 =1

J

which verify the requirements |Ax| < | A |x]|, |I] = 1 used above. In general, the sen-
sitivity of the system (4) will depend on the condition number x. When k > 1, (8) can over-
estimate the error.t
If 6A = 0, the formula
[|ox|| [[ot]

Ll iad
= 1o

gives a better estimate of the relative error.
For example, let us consider a material of order three (n = 3) and assume that

loeil = iu i=1,23, (11)
where u is a positive number.
It immediately follows that
2 -1 8 2
NAll = 14+3u+9u°, A7 = max 7;}7 \ (12)

where the notation max(,, ., .) indicates that the maximum number between the parentheses
has to be taken. Consequently, for any value of u # 0, k¥ > 1. If a material of order four

*If rounding errors are also considered, they may be added to Jt and SA.
T See e.g. Wilkinson [8].
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under the same step loading (11) for i = 1, 2, 3, 4 is considered, an easy computation shows
that

[All = 1+4p+16p% +644°,

68 10 7
3u’ it 6p)

(13
A7 = max(lS,

Finally the condition number k of a material of order n under the loading (11} is obtained
by using the norms

S ~ B B,
IAl= 3 G ™', A7 = maX(Blrv—z—,-~-*m) (14)
=1 TR
which have been obtained by induction. B; are suitable positive constants.
The above results show that the value of the kernels at 7, =1, = ... = 1, = 1, are

very sensitive to errors in the experimental values of g, and ye;. Moreover, if the number of
terms in the integral expansion (1) is increased, so is the value of . Thus, the experimental
accuracy has to be further improved in order to keep || 8x||/lx|| within a certain limit.

When the constant strains ye; are arbitrarily selected rather than given by (11), it will be
necessary to compute A~ ! in order to apply either of the estimates (8) and (10).

Let us check the usefulness of this error analysis when applied to experimental data:
stress relaxation experimentst of the form (2) performed on a Lexan polycarbonate polymer
at a temperature of 25°C. Table 1 shows the different uniaxial strains ye;, the corresponding
stresses ¢; and the computed values of E; at the instant ¢, = 1000 sec. It has been assumed
that the polymer behaves like a material of order three.

The calculations give

JA] = 1-045, A7 = 11,765, K = 12,294,

If only errors in the measured stresses are considered as in Table 1, one obtains by solving
(6) the new values of the kernels E; = E;+ 6E; as shown in Table 1. The estimates (8) and
(10) give the following results

x| .
foxi < 221 (estimate (8)),
fIxl
X .
LTH < 397 {estimate (10)),
Ixil
TABLE 1
i oF g; da,/o; 5 E;
(10%x dynes/cm?) (10'%x dynes/cm?)
i 0015 221 0-014 1-602 1-548
2 0-035 4-39 0018 -~ 7-575 — 05201
3 0-0435 498 — 0009 —-6754 — 2067

+ The author is indebted to Professor 1. Yannas of M.1.T. for providing unpublished experimental data.
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whereas the computed value is

m = 2-06.
fixil
This example shows that small errors in the stresses become greatly amplified in the kernel
values. Although in this case (8) is very pessimistic, the estimate (10) is in agreement with the
computed value. Calculations performed using different error vectors dt have shown a
similar tendency.

3. CONCLUDING REMARKS

The analysis of Section 2 is obviously applicable to the creep kernel functions of the
strain functional. Besides, it is unnecessary to consider more complex loading programs
once it has been proved that the value of the kernels along the lines 1, = 1, = ... = f, are
very sensitive to experimental errors. A similar comment can be made for three-dimensional
loading programs.

In conclusion, the error analysis performed in this work has shown that the use of the
Green—Rivlin representation with a large number of terms would require a level of
experimental accuracy which is apparently unavailable at the present time. For a fixed
experimental accuracy, the order of the material cannot be increased indefinitely because of
the numerical errors that may arise in the computation of the kernels. Thus, other methods
should be used, e.g. the one proposed by Pipkin and Rogers [9].

Finally it is to be noted that these results are also applicable to the determination of the
kernels of non-linear functionals used to characterize retarded non-linear responses to
time-dependent external excitations (Nakada [10]).
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AbcTpakt—MHccnenyerea npumMeHMMocTb npeacTasiennst I'puna-PuBnnHa aus HemuHeRHbIX, BAIKO-YIPYTHX
MaTepHanor, MyTeM Yy4eTa NOAPELIHOCTEH, BBITEKRIOWMX U3 HKCIIEPUMEHTANBHBIX AaHubix. [lonyyarotcs
IBa OrPaHUYeHHs ANIA JeHCTBUTENBHOH MOTPEWHOCTH GYHKUMI pessKcauun wan dyHKUMH FOA3YYeCTH B
Buie GYHKUWM NOTPEIHOCTER M3MEpPeHUs. AHAMU3 YKa3blBaeT Ha GONBUIYIO YYBCTBUTENBHOCTH siaep
GYHKUMK B 3aBUCHMOCTH OT DKCTIEPHMEHTANBHBIX NOTpeitHocTeil, KpoMe TOro, yseanuenue Yucia Boipaxk-
eHHil UHTETPANBLHOrO palnoxkenus takke omnbouHo. CpaBHUBAIOTCHS TEOPETHYECKHE HCCHEAOBAHUA C
TIOTPELIHOCTAMM, MOAYHCHHBIMY DY TTONBIOBAHUY IKCNIEPUMEHTANBHBIX J2HHBIX A% MHOTO-KapBoHATHOTO
nosumvepa Jlekcana. CpaBHeHHE YAOBAETBOPHTENBHO U1 OAHOIO U3 OTpaHudesuil, o KpaitHo! mepe as.
3T0rC 0coboro cnyyas.



